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Massively-Parallel Dislocation Dynamics Simulations

Wei Cai, Vasily V. Bulatov, Tim G. Pierce, Masato Hiratani, Moono
Rhee, Maria Bartelt and Meijie Tang
Lawrence Livermore National Laboratory, University of California,
Livermore, CA 94550

Abstract. Prediction of the plastic strength of single crystals based on the collective
dynamics of dislocations has been a challenge for computational materials science
for a number of years. The difficulty lies in the inability of the existing dislocation
dynamics (DD) codes to handle a sufficiently large number of dislocation lines, in
order to be statistically representative and to reproduce experimentally observed
microstructures. A new massively-parallel DD code is developed that is capable of
modeling million-dislocation systems by employing thousands of processors. We dis-
cuss the general aspects of this code that make such large scale simulations possible,
as well as a few initial simulation results.

Keywords: parallel computation, dislocation dynamics, plasticity

1. Introduction

It has been known for a long time that crystal plasticity is produced
by the motion of many dislocation lines [1]. Consequently, a priori
predictions of the strength of a single crystal against plastic deforma-
tion must be possible, at least in principle, by modeling the dynamics
of dislocation lines under the influence of external stress and mutual
interactions. Such has been a dream of the computational materials
scientists for several decades. Yet, it remains a grand challenge even to
date. The major difficulty lies in the fact that, to have a representative
model of crystal plasticity, the dynamics of a large enough number of
dislocations needs to be followed for a long enough time interval. The
length and time scales required have remained beyond the reach of the
existing simulation codes.

To understand why, let us consider a typical dislocation microstruc-
ture spontaneously developed in copper during plastic deformation [2].
The structure exhibits patterns over the length scale of microns. To
model this behavior, a simulation box of about L = 10µm would be nec-
essary. Given that the experimental estimates of dislocation density in
such conditions are around ρ = 1012m−2, the total length of dislocation
lines in the simulation box is about Λ = ρL3 = 10−3m. In a dislocation
dynamics (DD) simulation, dislocations are discretized into segments.
If the average segment length is d = 1nm, then the total number of
segments in this simulation would be N = Λ/d = 106, i.e. simultaneous
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treatment of a million segments is required. This is a rough estimate but
serves to identify the order of magnitude of the complexity of simulation
required to address the crystal plasticity problem. Here in this paper
we refer to a simulation with million dislocation segments as our target
problem.

Because the interactions between dislocation segments are complex
and long-ranged, dislocation dynamics codes, when running on a single
processor, can only handle up to 104 segments. Beyond that size the
simulation become very slow and no longer useful. Notice that this is
two orders of magnitude away from the target size stated above. Yet
another computational limit exists: when a reasonable initial disloca-
tion density is used, the total plastic strain one can accumulate using
the sequential DD codes is on the order of 0.1%, another two orders
of magnitudes below the levels of strain where dislocation patterning
and strain hardening behaviors are observed (typically at around 10%
plastic strain).

To extend our simulation capability in both length and time scales
by two orders of magnitude and to meet the requirements for faithful
modeling of crystal plasticity, massively parallel computing appears to
be a natural solution. For example, imagine a simulation where 10,000
processors are used simultaneously, each handling on average only 100
dislocation segments. Because the load on each processors is relatively
light, a million dislocation segments can be simulated at a reasonable
speed in order to accumulate large enough plastic strain. However,
devloping a DD code that is scalable up to 103 ∼ 104 processors is a
highly nontrivial task. In this paper, we describe a few general features
of our new massively-parallel DD code and present a few initial results
from runs on up to 200 processors.

2. Simulation Methodology

The development of the DD3d code began at the Lawrence Livermore
National Lab (LLNL) in 2001. To date (two years later) the first ver-
sion is completed while further developments are still on-going, mainly
focused on further enhancing the simulation efficiency and the accuracy
of the physical models. The main objective for the DD3d code is to be
able to take advantage of massively-parallel computers effectively. To
achieve this goal, there are two basic design principles to which we have
adhered during the entire development of DD3d. First, whenever pos-
sible, we choose algorithms that are conceptually and logically simple.
Second, we intend to make this code as generic as possible. Keeping
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these design principles in mind should be helpful in understanding the
aspects of code development described below.

The reason that we are only interested in conceptually simple al-
gorithms is obvious. A complex algorithm with many ad hoc rules is
not only aesthetically less appealing, but necessitates complex book-
keeping that can be disastrous if one tries to implement (and debug)
it in a massively parallel setting. On the other hand, dislocations are
known to be peculiar objects: they are topological line defects with
a singular elastic field. Not surprisingly, the algorithms for simulating
dislocations are necessarily more complex than those for simulating
point objects, such as atoms in molecular dynamics (MD). Therefore,
our choice of algorithms in DD3d is usually a compromise between
conceptual simplicity and computational efficiency.

If the code is generic then it can be easily applied to simulate various
materials after it is developed and fully tested for one test case. In
our development work on DD3d we find that almost all elements of
the algorithm deal with various generic issues that are independent of
the specific physical system. These include, for example, meshing the
dislocations into segments, computing driving forces, and communica-
tion between the processors. The system specific parts, on the other
hand, can be grouped into one place — the mobility module (details
later) that specifies how individual dislocations move in response to the
driving force it sees. The separation of the system-specific parts from
generic parts is rather similar to that in the commercially available
finite element (FEM) codes. This way the code will be able to model
a new material once the user defines his/her own material module of
interest.

2.1. Data Structure

In DD3d dislocations are represented as a set of “nodes” connected with
each other by straight line segments, as shown in Fig. 1. The position of
nodes, together with their connectivity, is our fundamental degrees of
freedom. If a node is connected with n other nodes, we call it a n-node,
or a node with n arms, or n neighbors. In Fig. 1, node 1, 2 and 3 are
2-nodes, or “discretization” nodes, while node 0 is a “physical”-node,
indicating the position where three dislocations meet.

The Burgers vectors are defined on every arm emanating from the
node, with the line direction always pointing away from the node. For
example,~b01 is the Burgers vector of the arm going from node 0 to node
1, and ~b10 is the Burgers vector of the same arm going in the reverse
direction. Therefore the sum rule ~b01 + ~b10 = 0 follows. Furthermore
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Figure 1. Dislocation network represented as a set of “nodes” (empty circles)
interconnected by straight segments (see text).

the total Burgers vector of all arms going out of any given node is also
zero, e.g. ~b01 +~b02 +~b03 = 0.

Under this convention, an arbitrary dislocation network can be uniquely
specified by a set of nodes {Ni}, each described by its location ~ri, its
connectivity and Burgers vectors of its arms, i.e.

Ni =
[
~ri; Iij , ~bij , (j = 1, · · · , ni)

]
, (1)

where Iij are the indices of the neighboring nodes of node i, and ni is
its total number of neighbors. The node set {Ni} is the data the code
deals with.

2.2. Generic Algorithm

In general, a DD3d computational cycle goes as the following.

1. Compute driving force ~fi on each node.

2. Compute velocity ~vi of each node based on ~fi and local dislocation
character.

3. Determine suitable time step ∆t.

4. Evolve all dislocation nodes to time t + ∆t, handling topological
changes occurring during [t, t + ∆t].

5. t := t + ∆t. Go to 1.

Except step 2, all the steps above are generic aspects of DD simula-
tions that are not dependent on the material of interest. They will be
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discussed in this section. The mobility module (step 2) will be discussed
in the following section.

2.2.1. Nodal Force Calculation
The driving force on any given node i can be rigorously defined as
(minus) the derivative of the total elastic energy of the dislocation
network E({Ni}), with respect to a virtual displacement of the nodal
position ~ri, i.e.

~fi = −∂E({Ni})
∂~ri

(2)

In the elasticity theory of dislocations [1], the total elastic energy can
be written as the sum of self energies between each segment pairs, such
as

E({Ni}) = WS(01) + WS(14) + WS(02) + · · ·
+WI(01, 14) + WI(01, 02) + WI(02, 25) + · · ·

=
∑
〈i,j〉

WS(ij) +
1
2

∑
〈i,j〉;〈k,l〉

WI(ij, kl) , (3)

where WS(ij) is the self energy of segment (i, j), WI(ij, kl) is the in-
teraction energy between segments (i, j) and (k, l). Contrary to several
earlier claims that the driving force could be infinite due to the exis-
tence of sharp corners at the nodes, it can be shown [3] that the driving
force in Eq. (2) is well defined, well-behaved and numerically converges
to the known analytical solutions for smooth dislocation curves as the
discretization becomes finer. It is also shown in [4] that the contribu-
tions to nodal driving force ~fi due to segment interactions, such as
WI(ij, kl) can be evaluated by numerically integrating the stress field
of segment (k, l) on segment (i, j), with proper weights. The contri-
butions from self energies (WS(ij)) on the other hand, are obtained
by analytical differentiation. Most of the computational time in DD3d
is spent on nodal force calculations, most of which is the evaluation
of stress field of one segment on another segment (assuming isotropic
linear elasticity). Because periodic boundary condition [5] is used, for
every segment the stress field due to an infinite array of its images
is also included. The image stress contribution is pre-computed and
stored in a table for interpolation during the simulation [6].

2.2.2. Moving the Nodes
For simplicity, we integrate the first order equation of motion describing
the over-damped motion of dislocations. This implies that there exists
a mobility function (M), which determines the instantaneous velocity
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(~vi) of a node, given its instantaneous driving force and local geometry:

~̇ri ≡ ~vi = M(~fi) (4)

The mobility function M will be discussed in more detail in the next
section. For now let us simply assume that M is available and can be
used to compute all the nodal velocities ~vi.

At this point, one can imagine the following simple algorithm for a
DD simulation. With a pre-selected time step ∆t, we can update the
position of all nodes by (the forward Euler method),

~ri := ~ri + ~vi ·∆t (5)

However, in practice the velocities of the nodes could vary significantly
during the simulation. For accuracy and numerical stability, it is better
to use a variable ∆t for each integration step. One approach is to put
an upper bound (rmax) on the distance any node is allowed to travel
during one simulation step. Let vmax = maxi |~vi| be the maximum
velocity of all nodes. Then the maximum allowed time step becomes
∆t = rmax/vmax.

One more complication still remains. Remember that our nodes are
not simple point objects, instead they are interconnected by dislocation
segments. If we simply update nodal positions according to Eq. (5),
certain dislocation segments may pass through each other without
notice, which would be an unphysical artifact. The segment-segment
collisions are accounted for in DD3d in the following way. For every
pair of segments, e.g. (1, 2) and (3, 4), given the positions of all four
participating nodes at time t = 0 (~r1, ~r2, ~r3, ~r4), and assuming their
respective velocities (~v1, ~v2, ~v3, ~v4) remain constant, we developed an
algorithm to predict whether or not these two segments will collide
during period [0,∆t], and if they do, when and where will the collision
occur. Let us call this algorithm,

[col, tp, ~rp] = predictcollision(∆t;~r1, ~r2, ~r3, ~r4;~v1, ~v2, ~v3, ~v4) (6)

If there is a collision, col returns 1, and tp ∈ [0,∆t] and ~rp are the
predicted time and location of the collision, respectively. If there is no
collision between the two segments, col returns 0.

At every time step, after we compute the velocities of all nodes, we
use the predictcollision algorithm to check for possible collisions
between all segment pairs. If there are no collisions at all during [0,∆t],
then we can safely update the positions of all nodes, and proceed to the
next iteration. Otherwise, we have to perform a few sub-iterations to
reach the desired time step ∆t. Let δt be the time of the first collision.
We will move all the nodes to time δt, (~ri := ~ri + ~vi · δt), and perform
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the necessary topological changes (details below) at that time. After
that, we increment the time once again to the next collision time. This
procedure is then repeated until the desired time step ∆t is reached.
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Figure 2. A simple approach to handling the topological changes during dislocation
collision by creating a new node at the collision point. (a) Initial state at time 0.
(b) At collision time tp, we replace node 4 with a new node that connects to all four
nodes 1, 2, 3, 5. (c) At a later time segment 1-6 and 3-4 collide. Again we create
a new node with 4 arms to replace node 1. But this time node 1 and 4 becomes
doubly connected. This is resolved by replacing the two arms connecting 1 and 4
with a single arm with Burgers vector equal to the sum of that of the two original
arms (d).

To take into account the topological changes when two dislocation
lines meet each other, we adopt the following simple approach. A new
node is created at the collision point that connects with all four nodes
participating in the collision. Therefore, the new node has 4 arms, as
shown in Fig. 2(b). It is interesting to note that by following this
very simple algorithm, several different dislocation reaction scenario
are reproduced naturally. To see this, let us follow this algorithm for a
few more steps.

As shown in Fig. 2(c), the second collision occurs at a later time,
between segments 1-6 and 3-4. Following the above procedure, we in-
troduce a new node with 4 arms to replace node 1. However, this would
result in a double connection between nodes 1 and 4, which is obviously
redundant. If the sum of the Burgers vectors of these two arms is non-
zero, we replace them with one arm with the Burgers vector equal to the
sum. This makes a new dislocation segment (a junction), connecting
two “physical” nodes – now each with three arms. If, on the other
hand, the sum of the two Burgers vector is zero, nodes 1 and 4 are
disconnected. Hence, dislocation annihilation occurs.
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2.2.3. Parallelism
The all important feature of DD3d is its capability to utilize a large
number of processors efficiently in parallel. To date, an efficient usage
of 1500 has been demonstrated. To make this possible, all processors
are treated equally during the simulation, i.e. there is no distinction
such as “master” versus “slaves” between the processors. The total
simulation box is divided into rectangular “domains”, each assigned to
one processor, as shown in Fig. 3. This way, the communications are
mostly local, that is, each processor can obtain most of the information
it needs by communicating with its nearest neighbors.

y

z

x

Figure 3. Decomposition of total simulation space into 3 × 3 × 2 domains along x,
y, z axes.

Because dislocation microstructures can be highly inhomogeneous,
dividing the total simulation box into equally sized domains may lead
to severe load imbalance, since some processors may contain a lot more
nodes than others. To reach a better load balance, we use the following
data decomposition procedure. The total simulation box is first divided
into Nx domains along the x direction such that each domain contains
equal number of nodes. Each domain is then further divided along y
direction by Ny times, and the resulting domains again divided along
z direction by Nz times. In the end, we obtain Nx ×Ny ×Nz domains,
all containing the same number of nodes, as shown in Fig. 3. How-
ever, because the dislocation structure evolves during the simulation,
we need to re-partition the problem among processors from time to
time, in order to maintain a good load balance. It is found that the
optimal number of nodes per domain is in the range from 200 to 1000.
In this case, the computational load on each processor is relatively
light, while most of the computing time is still spent on computation
instead of communication. If and when the total number of dislocation
segments increases significantly (e.g. due to dislocation multiplication),
we stop and restart the simulation with more processors, to maintain
a reasonable simulation speed.
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2.3. Mobility Module

The mobility module is the only material specific part of the DD3d code.
It specifies how fast a node should move in response to its driving force.
The effects of crystallography and temperature on dislocation mobility
are both accounted for here. It is expect that the users will develop
their own (possibly very sophisticated) mobility modules to simulate
materials of their interest. Here as an example, we describe a simple
mobility module that mimics the generic behavior of dislocation in
body-centered-cubic (BCC) metals at high temperatures. We call it
“pencil-glide” mobility module and use it in the simulation described
in the next section.

The “pencil-glide” mobility module is specified by three parameters:
the edge mobility Me, the screw mobility Ms, and a critical angle θc. For
simplicity, we will only discuss “discretization” nodes here, i.e. nodes
with only two neighbors. Let ~r1 and ~r2 be the position of the two
neighbors of node i, and let L = |~r2 − ~r1|/2. Then ~fi/L is the average
Peach-Koehler force around node i. Unit vector ~ξ = (~r2−~r1|)/|~r2−~r1|
approximates the dislocation line direction. The dislocation character
angle θ is defined through cos θ = |~ξ · ~b|. If θ < θc, the dislocation is
locally “screw”, otherwise it is “non-screw”. The velocity of “screw”
segments is simply ~vi = Me

~fi/L. Because it follows the direction of
the driving force and is not confined to any plane, this mobility func-
tion describes the well-known “pencil-glide” behavior observed in BCC
metals at high temperatures. The velocity of “non-screw” segments, on
the other hand, is confined within the glide plane, with normal vector
~n = ~b × ~ξ/|~b × ~ξ|. Let ṽ = [Me sin2 θ + Ms cos2 θ]~fi/L, the velocity for
“non-screw” dislocation is simply ~vi = ṽ − (ṽ · ~n)~n.

3. Results

Here we describe the results of initial benchmark simulations using
DD3d. The mobility law parameters chosen here are intended to mimic
the behavior of BCC metal Mo. For example, screw dislocations have
a lower mobility than edge dislocations. Specifically, Me = 10b · (s ·
Pa)−1, Ms = 1b · (s · Pa)−1, θc = arccos(0.95), where b = 2.725Å is the
magnitude of the smallest Burgers vector in BCC Mo.

In these simulations, we used a cubic simulation box with edges
along [100], [010] and [001] directions and 10µm in length. The initial
configuration consists of 8 long screw dislocations (with Burgers vectors
along 1

2〈111〉 directions) randomly positioned in the simulation box.
The initial dislocation density is around 1.2 × 1011m−2. A uniaxial
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Figure 4. (a) Stress-strain curves produced by DD3d simulations of two uniaxial
loading tests along [100] with strain rate ε̇ = 1s−1 (see text for more details). The
slope of the dashed line indicates the rate of strain hardening. (b) Dislocation density
in these two simulations as a function of strain.

tension is then applied along [100] direction under a constant strain rate
of ε̇ = 1s−1. The thin lines in Fig. 4 are the results from a 12-processor
Linux Beowulf cluster after about 6 weeks of the wall-clock time. A
total strain of about 0.4% is accumulated at the end of this simulation,
while the dislocation density has increased by more than 70 times. The
stress-strain curve also exhibits three different behaviors. Initially the
response is almost elastic and stress increases linearly. When the upper
yield point around 120MPa is reached, the stress drops upon further
loading, which indicates a strain softening behavior. Then, after a lower
yield point around 100MPa is reached, the stress starts to increase
again, this time exhibiting a strain hardening behavior. The slope of the
stress-strain curve in this region, i.e. the strain hardening rate dσ/dε,
as indicated by the dashed line, is around 10GPa.

The thick lines in Fig. 4 correspond to a separate simulation of the
same specimen, but with different loading history. After the original
specimen was deformed to point A [in Fig. 4(a)], it was unloaded and
relaxed under zero stress. We then reloaded it using the same strain rate
and temperature, and run the new simulation on a 200-processor Linux
cluster for 3 days. It is interesting to note that the new simulation does
not follow the original trajectory. Instead, it develops its own upper
and lower yield points. However, after the lower yield point, the new
simulation enters a strain hardening regime with about the same strain
hardening rate as before. This indicates the robustness of the strain
hardening behavior observed here.
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4. Concluding Remarks

In this paper, we give a brief overview of the new massively parallel
dislocation dynamics simulation code DD3d. Our description here is
intended to be brief, so that the reader can get a general apprecia-
tion about the overall structure of the code, without being distracted
by many technical details. To save the space, many general and im-
portant aspects are left out, such as remeshing, fast-multipole stress
calculations, realistic mobility laws, patterning analysis of simulated
dislocation micro-structures, etc. Other issues, such as more efficient
parallel collision handling and time-stepping algorithms on 104 or more
processors, are not completely resolved yet: DD3d is constantly evolving
to better address these challenging problems. We expect that DD3d will
soon become powerful enough to provide a statistically representative
model for dislocation patterning and crystal plasticity. We hope that
by exercising this explicit, large scale model, one can obtain new in-
sights that will help the development of more reliable physics-based
continuum theories of crystal plasticity.

This work was performed under the auspices of the U. S. Department
of Energy by the University of California, Lawrence Livermore National
Laboratory under Contract No. W-7405-Eng-48. Benchmark runs of
DD3d on 200 to 1500 processors were performed on the MCR cluster of
LLNL.
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